

I can tell a störy aböut a multiplicatiön expressiön.

There were 5 baskets and they had 7 strawberries in each one. There were 35 in all.

I can tell a störy aböut a divisiön expressiön.

Grandma had \$40. She split it
between her 8 grandchildren. How much money did each child get? \$5
I can find the missing number
DN A MOLTRPLCATDON E@vATRON WTFて
3 WHOLE NUMBERS.

The bakery split up 100 cookies into 10 boxes. How many cookies did they put in each box?

- ••••••••••••••••
- I can mödel and sölve . divisiön Wörd pröblems* Within 100.
-•••••••••••••••
CAN USE THE
COMMUTATIVE
PROPERTY.
$3 \times 2=6$
$2 \times 3=6$

I can use multiplication

- to find the missing number in a division problem.
$45 \div ?=9$ think $9 \times ?=45$

I can mödel and sölve multiplicatiön Wörd pröblems Within 100.

The bakery had 5 boxes with 10 cookies in each. How many cookies did they have altogether? -

I can sölve twö-step pröblems using the 4 öperatiöns THE BAKERY HAD 5 BOXES with 8 cookies. They sold 3 boxes. How many cookies are left? I can think aböut if the answer makes sense. $5 \times 8=40$ $40-24=16$

I can tell a störy

aböut a multiplicatiön expressiön.

There were 5 baskets and they had 7 strawberries in each one.
There were 35 in all.
I can tell a störy aböut a divisiön expressiön.

$40 \div 8$

Grandma had $\$ 40$. She split it between her 8 grandchildren. How much money did each child get? \$5

I can mödel and sölve multiplicatiön Wörd pröblems Within 100.

The bakery had 5 boxes with
10 cookies in each. How many cookies did they have altogether?

I can find the missing number IN A MOLTRPLCARDON

E@UATION WTMTM 3 WHOLE NUMBERS.

5 x ?

$=45$

I CAN USE THE COMMUTATIVE PROPERTY.

$3 \times 2=6$

$$
2 \times 3=6
$$

I can use the DISTRIBUTIVE property.

$45 \div ?=9$ think $9 x ?=45$

I can fluently divide Within 100 USING STRATEGIES.

\div	1	2	3	4	5	6	7	8	9	10
$=1$	1	2	3	4	5	6	7	8	9	10
$=2$	2	4	6	8	10	12	14	16	18	20
$=3$	3	6	9	12	15	18	21	24	27	30
$=4$	4	8	12	16	20	24	29	32	36	40
$=5$	5	10	15	20	25	30	38	40	45	50
$=6$	6	12	18	24	30	36	36	48	54	60
$=7$	7	14	21	28	35	42	42	56	63	70
$=8$	8	16	24	32	40	48	49	64	72	80
$=9$	9	18	27	36	45	54	63	72	81	90
$=10$	10	20	30	40	50	60	70	80	90	100

I can sölve twö-step pröbrems using the 4 öperatiöns

 THE BAKERY HAD 5 BOXES with 8 cookiesThey sold 3 boxes. Of tow many cookies are left? I can think aböut if the answer makes sense.
$5 \times 8=40$
$40-24=16$

I CAN REPRESENT 2 STEP WORD PROBLEMS using equations with a
 letter standing for the unknown guantity.

I CAN IDENTIFY arithmetic patterns

 in the multiplication table and explain them using properties.

I CAN IDENTIFYarithmetic patterns in the addition table and explain them using properties.

I CAN REPRESENT

 FRACTIONSon a
NUMBER LINE diagram.

I can cömpare 2 fractiöns With the same numeratör ör the same denöminatör by reasöning aböut their size.

I CAN RECORD THE RESULTS OF THE COMPARISON.

I understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.

I can explain that a fraction with the same numerator and denominator equal one whole.
I CAN EXPLAIN,
RECOGNIZE AND
GENERATE SIMPLE
EQUIVALENT FRACTIONS.

$1 / 2=2 / 4$

Of recognize that comparisons are valid only When the tWö
fractions refer to the same. WHOLE.

I can recognize fractions that are equivalent to whole numbers I can express whöle numbers as fractiöns.

I CAN RÖUND A NUMBER Tö THE NEAREST TENÖR NEAREST HUNDRED.

85 ROUNDS TO 90 95 ROUNDS TO 100

I CAN MULTIPLY A SINGLE DIGIT
by a MULTIPLE OF 10.

$235+185=420$
$200+100=300$
$30+80=110$
$5+5=10$
$300+110+10=420$

I can tell a story about a multiplication

 expression.

There were 5 baskets and they had 7 strawberries in each one.
There were 35 in all.

I CAN TEL LA STORY
ABOUT A DIVSION
EXPRESSION.

$$
40 \div 8
$$

I can use the commutative property

$3 \times 2=6$

x

$0 \quad x$

$2 \times 3=6$

I can use the

7×4 E
 (8×8)

+

(8x2)

I can use multiplication
find t he missing number
in a division pr oblem.

II can fluently mulliplly withion 100

 ursing strategies.| X | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 2 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 |
| 3 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 |
| 4 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 |
| 5 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
| 6 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 |
| 7 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 |
| 8 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 |
| 9 | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 |
| 10 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |

I can fluently divide within 100 USING STRATEGIES

\div	1	2	3	4	5	6	7	8	9	10
$=1$	1	2	3	4	5	6	7	8	9	10
$=2$	2	4	6	8	10	12	14	16	18	20
$=3$	3	6	9	12	15	18	21	24	27	30
$=4$	4	8	12	16	20	24	29	32	36	40
$=5$	5	10	15	20	25	30	38	40	45	50
$=6$	6	12	18	24	30	36	36	48	54	60
$=7$	7	14	21	28	35	42	42	56	63	70
$=8$	8	16	24	32	40	48	49	64	72	80
$=9$	9	18	27	36	45	54	63	72	81	90
$=10$	10	20	30	40	50	60	70	80	90	100

I can solve two-step problems using the 4 operations

THE BAKERY HAD 5 BOXES WITH 8 COOKIES. THEY SOLD 3 BOXES. HOW MANY COOKIES ARE LEFT? I CAN THINK ABOUT IF THE ANSWER MAKES SENSE.

$$
5 \times 8=40 \quad 40-24=16
$$

I can represent 2 step word problems using equations with a letter standing for the unknown quantity.

I CAN IDENTIFY ARITHMETIC PATTERNS IN THE ADDITION TABLE AND EXPLAIN THEM

 USING PROPERTIES| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
| 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |

I can identify
 Deaneris in the mullinexim Tof TD and explain them

 using propertios

I understand a FRAGTOOL has to have

I CAN REPRESENT FRACTIONS ON A NUMBER INE DIAGRAM

I can COMPARE 2 FRAGTYONS with the SAME NUMERATOR or the SAME DENOMYNATOR
 by REASONTNG about their SYZ.

I CAN RECORD THE RESULTS OF THE COMPARISON

I recognize that comparisons are valid only when the two fractions refer to the same whole

I understand two fractions as equivalent

 (equal) if they are the same size, or the same point on a number line.
I CAN EXPLAIN THAT A FRACTION WITH THE SAME DENOMINATOR AND NUMERATOR EQUAL ONE WHOLE

00

I can recognize fractions that are equivalent to whole numbers
 I can express WhöLe numbers as fractiöns.

0 ONDOBSTAMD PLGEE CGLCE. $356=300+50+6$ Three hundred fifty six

I can tell a story
 about a multiptication expression.

7trauwheners in emod mere.
Theow were 35 inall.

GRANDMA HAD \$40. OO SHE SPLTT IT BETWEEN HER 8 GRANDCHILDREN. HOW MUCH MONEY DID EACH CHILLD OET?

I CAN MODEL AND SOLVE DIVISON WORD PROBLEMS WITHHIN 100.

THE BAEREX SPLIT
 UP 100 COOKIES INTO
 10 BOXES. HOW MANY COOKIES DID THEY PUT IM EACH BOX?

I can use multiplication to find the

 missing number in a division problem.$$
45: ?=9 \text { hinkax? } 45
$$

I can fluently mulliply

X	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
3	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100

I can fluently divide within 100 USING STRATEGIES

\div	1	2	3	4	5	6	7	8	9	10
$=1$	1	2	3	4	5	6	7	8	9	10
$=2$	2	4	6	8	10	12	14	16	18	20
$=3$	3	6	9	12	15	18	21	24	27	30
$=4$	4	8	12	16	20	24	29	32	36	40
$=5$	5	10	15	20	25	30	38	40	45	50
$=6$	6	12	18	24	30	36	36	48	54	60
$=7$	7	14	21	28	35	42	42	56	63	70
$=8$	8	16	24	32	40	48	49	64	72	80
$=9$	9	18	27	36	45	54	63	72	81	90
$=10$	10	20	30	40	50	60	70	80	90	100

I can solve two-step

 problems using the 4operations

THE BAKERY HAD 5 BOXES WITH 8 COOKIES.

THEY SOLD 3 BOXES. HOW MANY COOKIES

ARE LEFT? ICAN THINK ABOUT IF THE

ANSWER MAKES SENSE.

I can represent 2 step word problems using equations with a letter standing for the unknown quantity.

I can identify

ardido and explain them

 using nadiditios
I understanda
 has to have

I can represent fractions

 on a number line diagyam

I recognize that comparisons are valid only when the two fractions refer to the same whole

I understand two tractions as equivalent

(equal) if they are the same size, ot the

same point on a numberl ine.

I can explain taxa a fraction with he same numerator and denomininato equal one whole

\author{

- •••• - - - ------
 --- - •
}
- • • •

I can recognize fractions that are equivalent to whole numbers

 I can express WhöLe

 I can express WhöLe numbers as fractiöns.

 numbers as fractiöns.}

叐

Thank You!

Thank you for your recent download! I hope you enjoy using it in your classroom with your students. Please use this document and share it with others. Please do not store it on a website. Whoever wants to use it should download it from my site. I would love to hear your from you. Let me know how Math conferring is going in your classroom. Feel free to email me at newtoneducationsolutions@gmail.com to ask questions, leave feedback and comments. I look forward to hearing from you!

About the Dr. Nicki Newton

Dr. Nicki Newton is an education consultant who works with
 schools and districts around the country and Canada on $k-8$ math curriculum. She has taught elementary school, middle school, and graduate school. Dr Nicki has an Ed.M. and an Ed.D from Teachers, College Columbia University. She is greaty interested in teaching and learning practices around the world and has researched education in Denmark, Guatemala and India. She has written several books, including being a part of the curriculum team for the new McGraw Hill Reveal Math series. She is currently working on a book about counting.

Terms of Use

Dr. Nicki Newton gives you the right to reproduce and use these pages for use in your classroom, at your grade level, at your school and in your district. You do not have permission to store it digitally or use it for commercial purposes. Uploading this product fully or partially, to the internet is a violation of the Digital Millennium Copyright Act.

You May:

Use this item for your own classroom Use this item with grade levels Use this item for schools and districts

You May Not:

Post this in any form on the Internet Change any part of this document Sell this document.

Let's Connect!

Follow me to find out about more math teaching and learning!
Blog: www.guidedmath.wordpress.com
Twitter: Drnicki Math
Facebook: Guidedmath123 Facebook: Math Running Records
Instagram: Guidedmathinaction
Copyright 2022 Newtoneducationsolutions

Check out the new Guided Math New Resources Dr. Nicki will POP into any book study group! Contact her at drnicki7@gmail.com

Jump Start Your Daily Routines!

Jump Start Your Problem Solving!

Customized Workshops

*Customized Workshops
Call us if you are interested in a customized workshop on any of our books. If you don't see a topic that you are interested in, please contact us to discuss it.
*More Opportunities
Labsites, Uirtual Coaching (Individual teachers and teams) and Grade Level Meetings

Stay In Touch!

Blog: www.guidedmath.wordpress.com Website: drnicknewton.com
 Website: www.mathrunningrecords.com
 Pinterest: @drnicki7
 Instagram: Guidedmathinaction
 Twitter: Drnickimath
 Facebook:
 Math Running Records
 Guided Math 123

